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ABSTRACT 

We cons t rac t  a finitely genera ted  project ive group whose e m b e d d i n g  cover 

is not  projective.  Th i s  solves P rob lem 23.16 of [F J]. 

I n t r o d u c t i o n  

A profinite group G has the e m b e d d i n g  p r o p e r t y  if for each pair of epimor- 

phisms (~: G ~ A, a: B --+ A) where B is a finite quotient of G there exists 

an epimorphism ~/: G ~ B such that  c~ o 7 = ~. An epimorphism 7r: E ~ H 

of profinite groups such that  E has the embedding property is an e m b e d d i n g  

c o v e r  of H.  It  is a s m a l l e s t  e m b e d d i n g  c o v e r  of H if in addition, for each 

embedding cover ~: G --* H there exists an epimorphism 0: G --+ E such that  

7r o O  = ~p. 

Haran and Lubotzky [HL] proved the existence and the uniqueness of the 

smallest embedding cover E ( H )  of each finitely generated profinite group H.  

The case where H is finite was one of the essential ingredients in the decision 

procedure of the theory of perfect Frobenius fields [F J, Cor. 23.19 and Thm. 

25.11]. 

Haran and Lubotzky [HL] proved another important  ingredient in the decid- 

ability procedure of the theory of perfect Frobenius fields: If  a profinite group G 
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has the embedding property, then so does its smallest projective cover G (also 

known as "universal Frattini cover") IF J, Prop. 23.9]. Among others these led 

Haran and Lubotzky to state without proof the following statement as [HL, Cor. 

2.12]: If H is a finitely generated profinite group, then E(H) = E(H).  As it 

was not clear how to prove this corollary, IF J] stated its t ruth and the truth of a 

related statement as an open problem: 

PROBLEM (IF J, Problem 23.16]): Let H be a finitely generated profinite group. 

(a) Is E(H)  projective whenever H is? 

(b) Is E( I-I) isomorphic to the smallest projective cover of E( H) ? 

The goal of this note is to produce a finitely generated projective group H 

such that its smallest embedding cover E(H) is not projective. In particular, 

H = H and therefore E(H)  = E(H).  On the other hand, the smallest projective 

cover E(H) is not isomorphic to E(H),  because the former is projective. So, 

both (a) and (b) are answered negatively, and Corollary 2.12 of [HL] is refuted. 

We describe H in Proposition 1.2 and prove that  although H is projective, 

E(H)  is not. In Section 2 we describe E(H),  by generators and relations. This 

description, which is independent of Section 1, proves again that E(H) is not 

projective. 

ACKNOWLEDGEMENT: I would like to thank Moshe Jarden for transforming my 

incomplete notes into the present paper. 

1. T h e  c o n s t r u c t i o n  of  H 

Throughout this note we use l to denote a prime number and Gt for an/-Sylow 

group of a profinite group G. We also reserve p for an odd prime. 

LEMMA 1.1: Let N be a closed normal subgroup of a profinite group G. For 

each prime l choose an l-Sylow group Gz of G. I f  N ~ 1, then there exists an l 

such that N N Gt ~ 1. 

Proof'. Choose a prime l that divides the order of N. Then its/-Sylow group 

N N Gt is nontrivial. ! 

PROPOSITION 1.2: Let H = Hp>4H2 be the profinite group defined by: 

H2 = (a, b) is the free pro-2-group on a, b, 

g v = (c) ~- Zp, 
C a ~-- C - 1 ,  C b -~ C. 
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Then H is projective but  its smallest embedding cover is not. 

Proof'. For each prime l, each/-Sylow group of H is/-free. Hence H is projective 

IF J, Prop. 20.47]. We prove in four parts that the smallest embedding cover 

7r: E ~ H is not projective. 

PART A: H is generated by two elements, namely a and bc Indeed, choose a 

generator u for Zp and a generator v for Z2. Since bc = cb the map (u, v) ~-~ (b, c) 

extends to an epimorphism Z2 • Zp ~ (b,c). As uv generates Z2 • Zp, bc 

generates (b, c). Hence, g = (a, b, c) = (a, be), as claimed. 

PART B: H does not have the embedding property Indeed, consider Klein's 

group A2 = (co, b0) of order r which is defined by the relations a~ = b~ = 1 

and aobo = boao. The group A2 acts on the cyclic group Ap = (co) of order p 
a0 cbo C0 ' by c o = Co I and = The semidirect product A Ao>~A2 is a quotient 

of H via the map (a, b, c) --~ (a0, b0, Co). Consider the epimorphism c~: A --- As 

defined by ~(ao) = bo, a(bo), = ao and a(co) = 1. Its kernel is (co). Consider 

the epimorphism r/: H ~ As defined by ~/(a) = ao, ~?(b) = bo and r/(c) = 1. 

Assume now that  there exists an epimorphism 0: H ~ A such that  moo = r~. 

Then O(c) = c~, where i is relatively prime to p, and O(a) = cJobo . Apply t? to the 

relation a - l e a  = a -1 to get c~ = Co i. Hence, pl2i, a contradiction. So, t9 does 

not exist and therefore H does not have the embedding property, as claimed. 

PART C: Ep is abelian Indeed, let F be the free profinite group on two gen- 

erators x, y. Use Part  A to define an epimorphism qa: F ~ H by ~(x) = a and 

~(y)  = be. Let U = qo-l((c)) and N -=- Ker(qo). Then F l U  -~ H/ (c )  "~ 1-12 is the 

free pro-2 group of rank 2. If U0 is a closed normal subgroup of F such that  F/Uo 

is a pro-2 group, then its rank is 2 and the canonical epimorphism F/Uo ~ F l U  

must be an isomorphism (a corollary of IF J, Prop. 15.3]). Hence Uo = U. Thus 

U is the smallest closed normal subgroup of F such that F / U  is a pro-2 group. 

As such, U is a characteristic subgroup of F. 

Let V be the smallest closed normal subgroup of U such that  U / V  is an 

abelian pro-p group. Then V is characteristic in U and therefore also in F.  Since 

U / N  ~= (c) ~ Zp, the group N contains V. Let q#: F / V  ~ H be the epimorphism 

which qa induces. 

Since F has the embedding property, so does F / V  IF J, Lemma 23.29]. Hence 

there exists an epimorphism -y: F / V  ~ E such that Ir o 3, = ~a'. Note that U / V  
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is the p-Sylow group of F/V.  So, "r maps U/V onto Ep. Since U/V is abelian, 

so is Ep. 

PART D: Conclusion of the proof Since N / V  is contained in U/V and the latter 

group is pro-p, the intersection of N / V  with (F/V)2 is trivial. Thus ~' is injective 

on (F/V)2. Hence 7r is injective on E2 = 7((F/V)2). Next note that  the only 

primes which divide the order of F / V  are 2 and p. By Part B, 7r is not injective. 

Hence, by Lemma 1.1, ~r is not injective on Ep, Since ~r(Ep) = Hp ~ Zp and 

since Ep is abelian, this implies that Ep is not pro-p free. Conclude that  E itself 

is not projective. ! 

2. T h e  s t r u c t u r e  of  E(H) 

The existence of the two automorphisms of H2 given by (a, b) --~ (b, a) and 

(a, b) --~ (a, a-lb) forces the smallest embedding cover E(H) to have two more 

generators for its p-Sylow group E(H)p such that a, b, and ab will have symmetric 

roles in their action on E(H)p. Thus we prove that E(H) = E(H)p>~E(H)2 

where E(H)2 = H2, E(H)p = (c, d, e) ~ Zp • Zp x Zp, and the action of E(H)2 

on E(H)p is given by (1) below. 

If a profinite group G acts on a multiplicative abetian group A, we define for 

each g �9 G a homomorphism Ag: A --* A by Ag(a) = aga. 

We also let G ~ = (g2[ g �9 G). It is a closed normal subgroup of G. As x 2 = 1 

for each x �9 G/G 2, the latter group is abelian. In particular, i fG  = (a, b) is apro- 

2 group of rank 2, then G 2 is the Frattini group of G and G/G 2 ~- Z/2Z x Z/2Z. 

In this case G = G2a u G2b U G2ab 0 G 2. 

LEMMA 2.1: Let G = Gp)~G2 be a pro~nite group (possibly/inite), where Gp = 

(c, d, e) is abelian, G~ = (a, b), and the action of G2 on Gp is given by 

(1) c ~ = c  -1, d a = d ,  e a = e  -1, c ~ = c ,  d b = d  -1, e b - e  -1. 

T h e n  

(a) i f x  E Gp satisfies x 2 = 1, then x = 1, 

(b) for each x e Gp we have (x 2) = (x), 

(c) t'or all x ,y  E G2, the action o/' x on Gp commutes with that of y, 

(d) each g e G~ acts trivially on Gp, 

(e) i fg  e C~a, then Im(Ag) = (d), 

(f) �9 a b, then Im( 9) = (c), 
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(g) 
(h) 

Proo f  o f  (a): 

Proo f  o f  (b): 

Proo f  o f  (c): 

i f  g e G~ab, then Im(Ag) = (e), and 

G v = (c) • (d) • (e). 

Let a be an element of Z v such tha t  2a  = 1. Then  x = x 2~ = 1. 

For each/3 E Zp we have x ~ = x 2 ~ .  

As a and b generate G2 it suffices to consider the case where x = a 

and y = b. The action of a on {c, d, e} commutes  with tha t  of b. Hence, so does 

its act ion on Gp. 

Proo f  o f  (d): For each h E {a, b} and each y C {c, d, e} there exists i C { + l }  

such tha t  yh =_ yi. Hence, this is the case for each h E G2. It  follows tha t  h 2 acts 

trivially on {c, d, e} and therefore also on Gv. Hence, each g E G 2 acts trivially 

o n  Gp.  

Proo f  o f ( e ) :  Let g = ya with y E G 2. Then, by (d), Ag(c) = cYac -= c - l c  = 1, 

Ag(d) = d 2, and Ag(e) = 1. Hence, by (d), Im(Ag) = (d 2) = (d/. 

Proo f  o f  (f),(g): Similar to tha t  of (e). 

P r o o f  o f ( h ) :  Let x E (c) M (d,e).  Then x a = x -1 and x b = 2C, because x is an 

element of (c). On the other  hand x = d~e ~, with a, /3 ~ Zp. Hence, x ~ = d~e -~  

and x b = d - ~ e  - z .  Hence d 2~ -- 1, and therefore, by (a), d z = 1. It  follows tha t  

e 2~ = 0. As before, e ~ = 1. Hence x = 1. Conclude tha t  (c) A (d, e) -- 1. 

Similarly (d) M (c, e) = 1 and (e) M (c, d) = 1. So, (h) is true. I 

LEMMA 2.2: Let  G be as in L e m m a  1 and let ~o: G --+ H be a homomorphism.  

Then, with H v = ~(Gp) and H2 = ~(G2) we have H = Hp>~H2. 

P r o o f  Since Gp is normal  in G, the group H v is normal  in H.  As G = GpG2, 

also H = HvH2. Finally, since p # 2, Hp N / / 2  = 1. Hence, H = H v >~H2. I 

PROPOSITION 2.3: Let  G = Gp>~G2 be the profinite group defined by: 

G2 = (a, b) is the free pro-2 group on a, b, 

G v =  (c, d, e) --- Z v x Z  v x Z p ,  

(1) c ~ ~.~ r  d a = d, e ~ = e -1,  c b = c, d b = d -1, e b = e - : .  

Then  G has the embedding  property. 

Proof." Let 0': B --+ A be an epimorphism of finite groups, and 7r: G --* A and 

qo': G --* B two epimorphisms. We have to construct  an epimorphism ~o: G --* B 
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such that 0' o ~ = lr. Obviously, with 0 = 0 ~ o ~ ,  it suffices to construct an 

automorphism ~ of G such that 0 o ~v = 7r. 

For each g C G let.0 = 7r(g). By Lemma 2.2, A = ApxA2, where A2 = 

7r(G2) = (~, b) and Ap = 7r(Gp) = (~, d, ~) satisfy the conditions of Lemma 

2.1. In particular Ap is the unique p-Sylow subgroup of A and A2 is a 2-Sylow 

subgroup of A. Thus O(Gp) = Ap and 0(G2) is conjugate to A2. Hence, there 

exists g E G such that O(G~) = A2. Replace 0 by conjugation by g followed by 

0, if necessary, to assume that 0(G2) = A2. 

Use Gaschiitz Lemma [F J, Lemma 15.30] to choose generators a,/3 of G2 

such that  O(a) = ~ and 0(/~) = b. As rank(G2) = 2, 

(2) 2 2 {G2a, G2/3 , G~at3} = {G~a, G~b, G2ab}. 

By Lemma 2.1, each of the groups Im(A~), Im(Az), and Im(A~) is cyclic. Now 

apply Lemma 2.1 on A, a, b, ~, d, ~ instead of on G, a, b, e, d, e to conclude that 

0(Im(A~)) = Im(Aa) = (d), 

0(Im(A~)) = Im(A~,) -- (~), 

0(Im(A,~)) = Im(Aa~ ) = (~>. 

Apply Gaschfitz Lemma again to choose elements % 6, ~ E Gp such that  

Im(A~) = ('y) and 0("/) = ~, 

(3) Im(A~) = (6> and 0(6) = d, 

Im($,~)  = (r and 0(r = ~. 

By Lemma 2.1 and by (2), 

{(6), (~/>, <~)} = {Im(A~), Im(Az), Im(A,~)} = {<c>, <d>, <e>}. 

In particular 

(4)  (6> n = (6) n = (-y) n = 1. 

Also, (% 6, r = (c, d, e> = Gp. Hence, the map 

(a,b,c,d,e) ~ (a,~3, %6,e) 
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defines automorphisms ~ 2 : G 2  --~ G2 and ~p: Gp ---+ Gp. If we prove that 

~, ~, 7, ~, ~ satisfy 

(5) 

then ~2 and ~p can be combined to an automorphism ~: G ~ G such that 

0 o,,p = ~-. 

Indeed, by (3), there exists x E Op such that ~ = x ~ x .  Hence, ~ = x~2x  ~ = 

x x  ~ = x ~ x  -- ~. Similarly we argue for 7 z and e~Z to prove: 

(6 )  ~ = ~, 7 ~ -= 7, e~Z = e. 

By (3), 7~7 = A~(7) e (~). By (6), by lemma 2.1(c), and by (3), 7~7 = 7Z~7 = 

7~Z7 = A~(7)  C (r Hence, by (4), 7~7 = 1 and therefore 7 ~ = 7 -1. Similarly 

one proves the remaining relations of (3) to conclude the proof of the Proposition. 

| 

THEOREM 2.4: Let  H be as in Proposi t ion 1.2. Then  the universal embedding  

cover o f  H is O: G ~ H ,  where G is the  group defined in Proposi t ion 2.3 and 

O(a) = a, O(b) = b, O(c) = c, and O(d) = O(e) = 1. Moreover,  H is project ive ,  

while G is not. 

Proof: Observe first that  a, b, c, 1, 1 satisfy the same relations in H as a, b, c, d, e 

in G. Hence, the map (a, b, c, d, e) --* (a, b, c, 1, 1) extends to an epimorphism 

9: G --~ H. Since G has the embedding property (Proposition 2.3), 9 is an 

embedding cover. We compare 9 with the smallest embedding cover r :  E ~ H. 

By definition, there exists an epimorphism ~: G --* E such that 7r o ~ = 9. 

We have to prove that ~o is an isomorphism. 

By Lemma 2.2, E = E p ~ E 2 ,  where Ep = ~(Gp) is the unique p-Sylow group 

of E and E2 = ~(G2) is a 2-Sylow group of E. In particular 7r(Ep) = O(Gp) = (c) 

and 7r(E2) = 0(G2) = G2. Since, E2 = (~(a), ~o(b)) and G2 = (a, b) is the free 

pro-2 group on a,b, the restriction of ~ to G2 and the restriction of ~r to E 

are isomorphisms (a consequence of IF J, Prop. 15.3]). So, without loss, identify 

~(a) with a, ~(b) with b, and E2 with G2. The restriction of ~ to G2 and the 

restriction of 7r to E2 become the identity maps. 

Let ~ = ~(c), d = ~(d), and ~ = ~(e). By (1) 

(7) ~a ~_.e-1 ' da :d , ,  ea : ~-1, c-~ : ~ ,  d-b d - l ,  ~b ~,-1 
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By Lemma 2.1(h), Ep = (~) • (d} • (~). If  we prove tha t  each of the procyclic 

pro-p groups (a), (d}, and (~) are isomorphic to Zp, then the restriction of ~ to 

Gp will also be an isomorphism and so ~ will be proved to be an isomorphism, 

as desired. As 7r(~) = O(c) = c and {c) - Zp we have (a) = ZB. So, it remains to 

prove the same s ta tement  for d and ~. 

It  suffices to produce for each positive integer n epimorphisms of (d} and (a) 

on a cyclic group Ap = {co} of order pn. We star t  with d. 

Consider Klein's group A2 = (co, bo) of order 4 which is defined by the 

relations ao 2 = 5 2 = 1 and aobo = boao. A2 acts on Ap by c~ ~ = %1 and 

c~ ~ = Co. Form the semidirect product  A = Ap xA2 and consider the epimorphism 

a:  A --* A2 defined by a(ao)  = bo, a(bo) = ao and a(co) = 1. Its kernel is {Co}. 

Define a homomorph i sm ~/: H ~ A2 by r/(a) = co, r/(b) = bo and ~(c) = 1. 

Since E has the embedding proper ty  and A is a finite quotient of H,  and therefore 

of E,  there exists an epimorphism ~: E ~ A such tha t  a o ~  = r/oTr. In  particular,  

as a (~(a ) )  = ~(lr(a)) = ao = a(bo), there exists a positive integer i such tha t  

~(a) = ciobo. Similarly, there exists a positive integer j such tha t  ~(b) = ~ a o .  

Also, x = ~(~), y = ~(d), and z = ~(~) belong to Ker(a)  = (co}. Hence, co 

acts trivially on each of these elements. Observe tha t  ~ maps  Ep = (~, d, g) onto 

the p-Sylow group (x, y, z) = (co) of A. Apply  a on ~a = ~-1 to deduce tha t  
bo xbo = xC~bo = ~(ga) = x -1 .  On the other hand, as c o = co and x C (Co), we have 

x bo -- x. Hence x = x -~ and therefore x -- 1 (Lemma 2.1(a)). Similarly, s tar t ing 

from the relation ga = ~-1 we deduce tha t  z = 1. Hence, ~((cl)) -- (y) = (co). 

Now we handle ~. Define a homomorphism /3: A -* A2 by ~3(ao) = co, 

fl(bo) = aoXbo, and/3(co) = 1. Its kernel is (co). 

Since E has the embedding property,  there exists an epimorphism A: E --~ B 

such t h a t / 3  o A = ~ o 7r. In part icular  there exists a positive integer i such tha t  

A(a) = cioao and there exists a positive integer j such tha t  A(b) = c~aobo. Also, 

x = A(~), y = A(d), and z = A(~) belong to Ker(~3) = (Co). Hence, Co acts trivially 

on each of these elements. Apply  A on the relation ~ab = ~-1 to conclude tha t  

xbO x a ~  bo = ~ �9 = x%a~ ~~176 x -1. On the other hand, since x C (co) we have 

x b~ = x. Hence x = x -1 and therefore x = 1. Similarly, deduce from the relation 

~ b  = d-1  tha t  y = 1. Hence A(~) = (z) = (Co), as desired. 

Finally, observe tha t  the Sylow subgroups of H are free. Hence H is projec- 

tive [F J, Prop.  20.47]. However, Gp is not  free. Indeed, cd(Gp) = 3. So, G is not 

projective. ! 
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